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Abstract— When strain-softening, elastic-plastic materials are loaded into the plastic regime they
often exhibit deformations that are localized into small regions at some point in the loading process.
This intense localized deformation limits the formability of materials and will often quickly lead to
failure with continued loading. Localized deformation is often associated with satisfaction of the
classical discontinuous bifurcation criterion. Here we propose that the loss of strong ellipticity
criterion should be used in place of the classical discontinuous bifurcation criterion as a necessary
condition for localization. The application of the strong ellipticity criterion implies that a bifurcation
mode associated with loss of positive definiteness of the symmetric part of the acoustic tensor must
be identified rather than a mode associated with the first zero eigenvalue of the acoustic tensor itself.
The eigensystem for the symmetric part of the tangent modulus tensor is obtained for several different
plasticity models. This eigensystem provides information about deformation modes associated with
both diffuse and discontinuous bifurcations. Material properties, boundary conditions and body
geometry are all shown to affect the diffuse and localized deformation modes that are generated.
Numerous experimental observations of necking and localization in metal specimens subject to
various boundary conditions are explained with the proposed approach.

INTRODUCTION

Necessary but not sufficient conditions for diffuse and discontinuous bifurcations, loss of unique-
ness, and localized deformation of elastic—plastic materials have been previously developed.
A necessary condition for loss of material stability, loss of uniqueness and any bifurcation
in the solution is the loss of positive definiteness of the rate of second order work (Drucker,
1950 ; Hill, 1958). This general bifurcation criterion can also be expressed as loss of positive
definiteness of the symmetric part of the tangent modulus tensor. The eigentensor, or
mode, associated with a general bifurcation may or may not have a kinematically com-
patible form. A mode which is not kinematically compatible, can only exist in a zone
described as a point or surface, i.e. a domain of measure zero. Such a mode initiates smooth
changes in the deformation field such as necking and is usually referred to as a diffuse mode.

Valanis (1989) states that loss of material stability should be associated with the limit
point where the tangent modulus tensor obtains a zero eigenvalue. This may be appropriate
if one considers only statically determinant specimens with force prescribed systems. For
materials with symmetric tangent modulus tensors, the Valanis (1989) and Drucker (1950)
interpretations both identify the limit point as the point at which necessary conditions for
loss of material stability are first satisfied. For materials with unsymmetric tangent modulus
tensors, loss of positive definiteness of the symmetric part of the tangent modulus tensor
and satisfaction of the necessary condition for a general bifurcation can occur prior to the
limit point.

Hill (1962), Mandel (1966), Rudnicki and Rice (1975) and Rice (1976) have stated
that loss of material stability and localization will not occur until the acoustic tensor obtains
a zero ecigenvalue. The acoustic tensor is dependent on both an orientation vector and on
the material. Localization is associated with a strain rate jump within a planar band that
does not lead to any kinematic incompatibilities with the surrounding material. Since the
mode can be interpreted as a jump in strain rate within a band over the strain rate in the
surrouynding material, the mode is called a discontinuous bifurcation. Localization may
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initiate on a domain indefinite in extent. Evolution of the domain can only be controlled if
additional constraints such as those provided by a non-local constitutive theory are present
(Schreyer, 1990). A spectral analysis of the acoustic tensor is rather difficult, although
recent work in this area by Ottosen and Runesson (1991), Bigoni and Hueckel (1991) and
Runesson ef al. (1991) appears encouraging.

Ottosen and Runesson (1991) state that loss of strong ellipticity of the governing
differential equations occurs whenever positive definiteness of the symmetric part of the
acoustic tensor is lost. When the tangent modulus tensor and thus the acoustic tensor are
symmetric, loss of strong ellipticity and satisfaction of the classical necessary condition for
a discontinuous bifurcation will first occur at the same point. However, for non-symmetric
acoustic tensors, loss of strong ellipticity will precede satisfaction of the necessary condition
for a classical discontinuous bifurcation. In addition to the loss of positive definiteness of
the acoustic tensor, loss of strong ellipticity can also be interpreted as satisfaction of the
general bifurcation condition with an associated strain rate which is of a form suitable for
providing a kinematically compatible velocity field (Bigoni and Hueckel, 1991). Here we
postulate that localization should be associated with the loss of strong ellipticity.

An eigenanalysis of the symmetric part of the tangent modulus tensor provides a wealth
of information about deformation modes associated with both diffuse and discontinuous
bifurcations. The necessary condition for a general bifurcation is first satisfied when the
fundamental eigenvalue of the symmetric part of the tangent modulus tensor obtains a
value of zero. The deformation mode associated with this bifurcation is characterized by
the fundamental eigentensor. Discontinuous bifurcations are investigated by choosing a
mode which satisfies the general bifurcation criterion and is restricted to be of a form
normally associated with a discontinuous bifurcation. The mode is expressed as a linear
combination of the eigentensors associated with the symmetric part of the tangent modulus
tensor. With this approach there is no need to explicitly determine or analyse the acoustic
tensor. By interpreting the problem of material stability as an eigensystem problem in the
presence of a constraint, we automatically establish the structure for incorporating
additional constraints, such as plane strain, which may be present because of external
loading and boundary conditions. The presence of additional constraints automatically
infer that the usual procedure of finding the first zero eigenvalue of the acoustic tensor may
not be an indicator of localization.

The approach used is to determine the spectral decomposition of the symmetric part
of the tangent modulus tensor. For conventional plasticity models, this decomposition is
straightforward and explicit linear combinations of eigentensors can be obtained to show
satisfaction of constraints which reduce to linear algebraic equations of the eigentensors.
Some of the constraints can only be satisfied if the fundamental eigenvalue is negative which
only occurs when plasticity models with associated flow rules exhibit strain-softening. The
degree of softening, if any, required to meet the constraint condition depends on the
particular loading path being considered.

With the insight provided by this approach, we show that features exhibited by a
number of classical experiments can be easily explained using simple constitutive models.
The necking and localization of a material subject to various constraints can provide
valuable confirmation of the suitability of a constitutive model. For simplicity, we confine
our attention to rate and temperature independent material behavior and infinitesimal
deformations.

GENERAL BIFURCATION

Drucker (1950) postulated that the stability of a material could be evaluated by
considering the work done by an external agency. A material is stable (will remain in
equilibrium) if (a) positive work is done by the external agency during the application of
the set of stresses and (b) the net work done by it over a cycle of application and removal
is zero or positive. If plastic deformation is generated during the cycle then the net work
must be non-zero. These statements indicate that a necessary condition for loss of material
stability is
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é:6 =0, (H

where ¢ and ¢ are the stress and strain rates at some point or region in the body. Equation
(1) was shown by Hill (1958) to be a necessary condition for any type of bifurcation and
loss of uniqueness. This general bifurcation criterion, eqn (1), can also be written as

£:D:é=0, 2)

where D is the symmetric part of the tangent modulus tensor, Dy, = 3(Djjir+ Digy). All of
the fourth order tensors used in this paper possess the minor symmetries D, = D;y, and
D, = Dy Equation (2) indicates that general bifurcations may occur whenever D* is not
positive definite.

LIMIT POINT BIFURCATION

General bifurcations are usually associated with non-zero stress rates both inside and
ouside the bifurcation zone. The subset of general bifurcations associated with a null stress
rate occur only at the limit point when

D:é=0 or det(D)=0, 3)

or, in other words, when the tangent modulus tensor D has a zero eigenvalue. Valanis
(1989) recently suggested that eqn (3) is a necessary and sufficient condition for loss of
material stability. His interpretation assumes that the general bifurcation associated with
the limit point is always activated. If constraints are present, the general bifurcation associ-
ated with the limit point may not be activated, and it becomes necessary to evaluate other
potential general and discontinuous bifurcations. Here we adopt the classical necessary
condition for a general bifurcation given by eqn (2).

CLASSICAL DISCONTINUOUS BIFURCATION

A criterion for discontinuous bifurcations in elastic—plastic materials with associated
flow rules follows from Hadamard’s (1903) studies of elastic stability and was developed
by Hill (1962). Later, Mandel (1966), Rice (1976), Rudnicki and Rice (1975), Rice and
Rudnicki (1980), Raniecki and Bruhns (1981) and Ottosen and Runesson (1991) used Hill’s
criterion to investigate discontinuous bifurcations in elastic—plastic materials with both
associated and non-associated flow rules.

Consider a homogeneous solid subjected to monotonic, proportional loading. We wish
to determine at what point in the loading process a discontinuous bifurcation can occur
such that subsequent strain rates become discontinuous across parallel planes of orientation
n that separate a zone of localized deformation from the rest of the body. Maxwell’s
compatibility conditions require that the strain rate in the localized zone, &', be of the form

g =&+8 with & =imn+n@m), @

where & is the strain rate outside the localized zone, & is a kinematically admissible dis-
continuous mode, and m can be interpreted as a vector that represents the orientation of
the relative velocity of regions on opposite sides of the localized deformation zone due to the
introduction of the localized zone. The discontinuous bifurcation mode £* is characterized
by the following eigenvalues: 4, < 0, 1, = 0 and A; > 0 with at least one eigenvalue being
non-zero.

Assume that the entire body is being plastically deformed, the stress and strain com-
ponents are uniform throughout, and the body is at the onset of localization. With the
assumption of rate-independent behavior, the stress rates inside and outside the localized
zone are given by
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¢ =D':¢ and ¢° =D°: &, (5)

where D' and D° are the tangent modulus tensors for material inside and outside the localized
deformation zone, respectively. For continuing equilibrium, the traction rates must be
continuous across the boundaries of the localized deformation zone:

t =1 or n(¢'~6°) =0. (6)

By combining these equations, Rice (1976) shows that the requirement for continuing
equilibrium is given by

n (D'—D°):£+Q m =0, (7
where

Q=n'Di'n (8)

is the acoustic tensor.

Suppose the body is loaded such that the strain rate £ is constrained to evolve
continuously. Then it is reasonable to assume that the tangent modulus tensor for material
outside the localized zone, D°, is identical to the tangent modulus tensor for material inside
the localized zone, D', at the initiation of the bifurcation. The classical necessary condition
for a discontinuous bifurcation is then obtained from eqn (7) :

Qm=0 or det(Q)=0. (9)

In other words, the classical criterion for a discontinuous bifurcation is that the acoustic
tensor, Q, has a zero eigenvalue, a necessary condition for loss of ellipticity (Rice, 1976).

LOSS OF STRONG ELLIPTICITY

The classical discontinuous bifurcation criterion is based on two important assump-
tions. The first assumption is that the discontinuity in the strain rate field is constrained to
have a special form so that material in the localized zone will remain kinematically com-
patible with the surrounding material. The second assumption is that the strain rates evolve
continuously such that the tangent modulus tensor for material inside the localized zone is
identical to the tangent modulus tensor for material outside the localized zone during the
initiation of the localized zone. The general bifurcation criterion requires neither of these
assumptions. Specifically, a general bifurcation will not necessarily be associated with a
mode which has the special form of & in eqn (4) and the active tangent modulus tensors
for material inside and outside the bifurcation zone will not necessarily be identical.

The general bifurcation criterion [eqn (2)] is a necessary condition for any type of
bifurcation. A necessary condition for a general bifurcation with a kinematically compatible
mode, £, is the loss of strong ellipticity criterion (Bigoni and Hueckel, 1991)

D=0 = m-Q-m=0. (10)

We adopt loss of strong ellipticity as a necessary condition for localization because this
criterion identifies the first possible bifurcation with a kinematically compatible mode.

The requirement for continuing equilibrium [eqn (7)] may be satisfied when loss of

strong ellipticity occurs if the continuity constraint (in time) on £° is relaxed. For example,
let Q be decomposed into its symmetric, Q° and antisymmeric, Q", parts:

Q=Q+Q". (D

Loss of strong ellipticity {eqn (10)] will first occur when
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Q**m=0 or det(Q’) =0, (12)

since Q° is positive, semi-definite at this point. This criterion [eqn (12)] will be satisfied prior
to or at the same time as the classical discontinuous bifurcation criterion of eqn (9). If no
external constraint is placed on ¢° other than compatibility, then €° is free to adjust such
that the continuing equilibrium equation

n-(D'—D°):&+Q" 1 =0 (13)

is satisfied when the loss of strong ellipticity criterion is satisfied. This means that a
discontinuous bifurcation may occur when the loss of strong ellipticity criterion is satisfied
and ¢° is not constrained.

SUMMARY OF BIFURCATION CRITERIA

The criteria for diffuse and discontinuous bifurcations are summarized in Table 1. The
general bifurcation criterion is first satisfied when the determinant of the symmetric part of
the tangent modulus tensor is equal to zero. For materials with associated flow, the tangent
modulus tensor is symmetric and the general and limit point bifurcation criteria both
identify the limit point as the first point at which any type of bifurcation may occur.
However, for materials with non-associated flow the general bifurcation criterion indicates
that bifurcations may occur in the hardening regime.

The loss of strong ellipticity criterion is first satisfied when the determinant of the
symmetric part of the acoustic tensor is equal to zero. For materials with associated
flow rules, the acoustic tensor is symmetric and the loss of strong ellipticity and classical
discontinuous bifurcation criteria identify the same first discontinuous bifurcation point.
However, for materials with non-associated flow, the loss of strong ellipticity criterion will
predict that localization may occur prior to the point identified by the classical discontinuous
bifurcation criterion.

Discontinuous bifurcations are a subset of general bifurcations and classical dis-
continuous bifurcations are a subset of those discontinuous bifurcations which satisfy the
loss of strong ellipticity criterion. Constraints may inhibit the activation of certain possible
bifurcation modes for which the necessary but not sufficient conditions given in the previous
section have been satisfied.

CHARACTERIZATION OF BIFURCATION MODES

Bifurcation modes, &, represent perturbations to a homogeneous strain rate field that
may be activated whenever the necessary conditions presented in the previous section are
satisfied. Any bifurcation mode, &, can be characterized by its three eigenvalues, 1, < 4, < 45.
Modes associated with discontinuous bifurcations are restricted to be of the kinematically
compatible form, £, given in eqn (4). Suppose we choose a local coordinate system with
coordinate x, parallel and coordinates x, and x; perpendicular to n such that the com-
ponents of n and m are

Table 1. Summary of bifurcation criteria

Criterion Equation Mode
General §:D:6=0 Diffuse or localized
Limit point D:é=0 Diffuse or localized
Loss of strong ellipticity m-Q°-m=20 Localized

Classical discontinuous Qm=0 Localized
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(@ (b

Fig. 1. Discontinuous bifurcation modes: (a) opening, (b) shearing.

1 o
n=40;, m=<28,. (14)
0 0

The components of the corresponding discontinuous bifurcation mode, &, are

«a B 0
&=(p 0 0f (15)
0 00

When f is equal to zero, the relative velocity of the bodies is oriented in a direction normal
to the zone, and the strain rate jump in the zone represents an opening mode (Fig. 1). When
a is equal to zero, the strain rate jump represents a shearing mode. Also, note that ¢ has
eigenvalues of «/2+./a?/4+ B? and zero. Thus, a discontinuous bifurcation mode has a
fundamental eigenvalue, 4,, that is less than or equal to zero, an intermediate eigenvalue,
A,, that is equal to zero, and a third eigenvalue, 4, that is greater than or equal to zero.

Modes associated with general bifurcations can be any symmetric second order tensor
as long as the necessary condition for a general bifurcation {eqn (2)] is satisfied. For example,
a general bifurcation mode could have components obtained as a slight generalization of
eqn (15):

a B0
i=|f 0 0 (16)
0 0 p

An analysis in the x,—x, plane can be performed as before for a discontinuous bifurcation
with the origin of x; at the surface of a possible discontinuity ; however, now an incom-
patibility in the velocity field exists for points x; 7 0 which are not in the x,—x, plane (Fig.
2). There are two ways to interpret this situation. In brittle materials, some experimental
specimens exhibit microcracking in a specific orientation which could be considered a
manifestation of the incompatible velocity field. In ductile materials, the potential devel-
opment of an incompatible mode will initiate smooth changes in the deformation field such
as necking.

The construction given above displays a compatible mode in the x,—x, plane with the
possibility of an incompatible component in the x; direction. Of course, a compatible mode
could possibly exist in other planes. The actual orientation of the necked region might be

_based on the geometry of the specimen. For example, if the dimensions of a specimen in
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281

Fig. 2. A diffuse bifurcation mode.

the x; and x, directions are much larger than the dimension in the x; direction, then there
might be a preference for most materials to neck with the direction of the potential
incompatibility oriented towards the minimum dimension of the specimen.

In general, for a localized zone to form and remain compatible in some plane with the
surrounding material, there must be some orientation in the plane such that the normal
component of the localized mode is equal to zero. In terms of the eigenvalues associated
with a bifurcation mode, compatibility can only exist in principal planes for which 4,;4; < 0.
Recall, that a discontinuous bifurcation mode has a zero intermediate principal value and
is thus compatible in all three principal planes. Diffuse bifurcation modes with one positive
and two negative eigenvalues are compatible only in the principal planes with eigenvalues
of opposite sign. Finally, diffuse bifurcation modes that are positive or negative definite are
compatible only at a single point and are not compatible in any principal plane.

BIFURCATION CRITERIA AND THE EIGENSYSTEM FOR D*

In this section, we investigate the relationship between the bifurcation criteria presented
in the previous section and the eigensystem associated with the symmeric part of the tangent
modulus tensor, D®. Consider the eigenvalue problem

D*:x;, = w;x;, a7n

in which x; denotes an eigentensor for D* and w, the corresponding eigenvalue. Due to its
minor symmetries, D® has six symmetric and three skew-symmetric eigentensors. Since the
bifurcation modes, &, are symmetric second-order tensors, we confine our attention to only
the symmetric eigentensors associated with I* and refer to them simply as the eigentensors
associated with D* throughout the remainder of this paper.

For convenience, we normalize the eigentensors so that

and order the eigenvalues such that w, < w, < ... ws. A bifurcation mode, or any symmetric
second-order tensor, can be written as a linear combination of the eigentensors associated
with D* as follows:

£ =
i

M-

o X, (19)

1

i

and the necessary condition for a general bifurcation from eqn (2) can be written as

6
gD :é= ) alw, =0. (20)

i= 1

The necessary condition for a general bifurcation is first satisfied when @, = 0, and the
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corresponding bifurcation mode is characterized by the fundamental eigentensor. If con-
straints from the geometry or boundary conditions are present, the bifurcation mode given
by the fundamental eigentensor may not be activated. If the material strain softens with
continued loading, the fundamental eigenvalue will become negative and the necessary
condition [eqn (20)] for numerous other diffuse and discontinuous bifurcation modes will
be satisfied. A discontinuous bifurcation associated with loss of strong ellipticity may be
activated when the general bifurcation criterion is satisfied and the corresponding ¢ has a
special form. Specifically, the intermediate eigenvalue for this second order tensor, &,
must equal zero. Finally, localization will only occur when the necessary condition for a
discontinuous bifurcation mode that is not constrained by the boundary conditions is
satisfied.

EIGENANALYSIS OF THE ELASTIC TANGENT MODULUS TENSOR

Eigenanalyses of the tangent modulus tensors provide a wealth of information about
both diffuse and discontinuous bifurcation modes and aid in the identification of constrained
bifurcation modes. Here, it is shown that the eigensystem for an elastic tangent modulus
tensor can be easily obtained. In subsequent sections, eigensystems for plastic tangent
modulus tensors are obtained.

For an elastic increment in an isotropic material, the tangent modulus tensor is the
elasticity tensor, E, given by

E = 3KP?+2GP?, 2n

where K is the bulk modulus and & is the shear modulus for the elastic material. The bulk
and shear moduli are related to Young’s modulus, E, and Poisson’s ratio, v, as follows:

E E
K=rru, G=_ 0. 22
3(1—-2v) 2(1+v) (22)
The fourth order spherical projection operator, P*?, and the deviatoric projection operator,
P¢, are given by

P* =li®i, P‘=1-P" (23)

Here I is the symmetric fourth order identity tensor and i is the second order identity.
The spherical projection operator P®, has only one nonzero eigenvalue of one with a
corresponding eigentensor equal to the second order identity. All of the other symmetric
eigentensors for P are in a deviatoric space, a space of symmetric second order tensors
orthogonal to i. The deviatoric projection operator, P, has an cigenvalue of one with a
multiplicity of five. The corresponding five eigentensors are orthogonal to i and span the
deviatoric space. The second order identity is also an eigentensor for P¢ with a corresponding
eigenvalue of zero. With this information and the expression for E, one observes that E has
an eigenvalue of 3K with a multiplicity of one and an eigenvalue of 2G with a multiplicity
of five. The corresponding eigentensors are the second order identity and any set of five
tensors which are orthogonal to the identity and span the deviatoric space, respectively.
Specifically, the components in a Cartesian coordinate system of the normalized eigen-
tensors, ¢;, for E can be chosen to be the following:

) B S B R O N B CO

— (} 2 0 s M—: 0 0 0 N —";:1 0 O s T 0 0 O +

VOl o o —1) V2L o 0 1 V2o o o V21 6 o
ooy oo
—10 0 1|, —|0 1 0} (29
ﬁoxm o o 1
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with corresponding eigenvalues of 4; = 2G, i = 1,5 and A¢ = 3K. The set of eigentensors
given above is not unique; however, the set must always span the space of symmetric
second-order tensors. Also, note that if Poisson’s ratio equals zero then 2G = 3K = E and
all of the eigenvalues are equal to E and E = EI. Since the elastic tangent modulus tensor,
E, is symmetric and positive definite, bifurcations cannot occur during elastic loading or
unloading.

EIGENANALYSIS OF PLASTIC TANGENT MODULUS TENSOR

A plasticity model is characterized by a yield function, ¥, which defines a surface in
stress space separating elastic and plastic regimes and a flow rule

& = pg, (25)

where g is a second order tensor which defines the orientation of the plastic strain increment
and p is a monotonically increasing parameter. The tangent modulus tensor when plasticity
is occurring is given by

D=E—~;~E:g®f:E, (26)

where T is the normal to the vield surface defined by the yield function ¥':

_ov
" o’

@7

The scalar A4 is given by
A=H+g:E:f (28)

where H is the generalized strain-hardening modulus which is positive, zero, or negative for
strain-hardening, perfect, and strain-softening plasticity, respectively. Plastic loading occurs
when W =0and f:E:é> 0.

Consider the eigensystems of E: (4;,¢) and D*: (w;, x;) as presented previously. The
elastic tangent modulus tensor, E, is symmetric and positive definite. Also, the eigenvectors
for E span the space of symmetric second order tensors. The eigenvalues and eigenvectors
for the symmetric part of the plastic tangent modulus tensor, D®, will depend on the specific
plasticity model being used. Since the eigentensors of E span the space of symmetric second
order tensors, we can express f and g as a linear combination of the eigentensors of E.
Suppose f and g can be expressed as a linear combination of two of the elastic eigentensors
(say the first and second to be specific). Then

f=fe + /e, g=ge +g:¢, (29

and

E:f= fidie; 4+ fidre,, E:g=g,4e+g,4,e,. (30)

Postulate an eigentensor for D® of the form

x = {8+ e (3D
Then
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s .. DEx_ - giE:x

E:f=w(§le|+fge2), (32)

which shows that the postulated form of eqn (31) is valid. After equating the coeflicients
of e, and e,, the resuit is

[(ZAw—zAnglfl D (glfzzlmng!z.zz)} {é.}z {o} a3

(92/1Ada+g: frhiA)  QAw—244,42g,1,43) | 1€, U

For a non-trivial solution to exist, the determinant of the coefficient matrix must equal
zero. The quadratic characteristic equation yields the two eigenvalues w,, @, and the
corresponding normalized eigentensors x; and x, are obtained by determining the associated
values of £, and &,. The remaining four eigenvalues and eigentensors of D coincide with
those of E and span the remaining space of symmetric second order tensors. The procedure
can be extended in a similar manner to the case where f and g are members of any subspace
of the space spanned by the eigentensors of E.

The necessary condition for a general bifurcation is initially satisfied when the fun-
damental eigenvalue for D® is equal to zero. The corresponding bifurcation mode is given
by the fundamental eigentensor associated with this zero eigenvalue. The solution to the
standard eigenproblem [eqn (32)], with @ set equal to zero, yields the critical hardening
modulus, H®°, associated with the first possible bifurcation

H® = {(/f:E:f/g:E:g—f:E:g) (34)
and the corresponding bifurcation mode is

S S -
l \/f:E:f \/g:E:g'

Equivalent expressions for the hardening modulus associated with the first possible bifur-
cation, H®, have previously been obtained by directly solving eqn (2) (Mroz, 1963 ; Hueckel
and Maier, 1977; Raniecki and Bruhns, 1981). Also, Runesson and Mroz (1989) have
solved the generalized eigenproblem

x (335)

D :x; = wE:x (36)

and obtained identical expressions for H® and x,. It is important to point out, however,
that the standard and generalized eigenproblems will only have an identical fundamental
eigentensor when the corresponding fundamental eigenvalue is equal to zero. If the fun-
damental eigenvalue for D* is not equal to zero then the eigensystem for the standard
eigenproblem must be obtained to perform the bifurcation analyses.

DRUCKER-PRAGER WITH NON-ASSOCIATED FLOW

Consider a Drucker—Prager plasticity model with a yield function given by

N (37)

where J, is the second invariant of the deviatoric stress and I, is the first invariant of the
total stress as follows:
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J,=16%6% I, =a:i, (38)

where ¢ is the stress deviator. The normal to the yield surface, f, is given by

d
=2 4 Hy (39)

/1) 3
and the orientation of the plastic strain increment is

: o’ )+§i, (40)
27,

g=

The tangent modulus tensor for a plastic step is given by eqn (26).

Unfortunately, an eigenanalysis of the plastic tangent modulus tensor for this material
is rather difficult because two of the eigenvalues and two of the eigentensors depend on the
hardening modulus. However, using the procedure outlined in a previous section, we can
obtain values for the critical hardening moduli for various bifurcation criteria. For any
loading, the tensors f and g can be written as a linear combination of two of the elastic
eigentensors, one from the deviatoric space and one from the spherical space. For example,
for uniaxial tension in the x, direction, f and g can be written as linear combinations of e,
and e, from eqn (24) as follows:

f=fle,+ fees, E=g€+geces. 41

Two of the eigentensors associated with D* can also be written as linear combinations of e,
and e, as follows:

X; =71+ V686 Xs = P1€;+pgCs. 42)

The remaining four eigentensors for D® have corresponding eigenvalues of 2G and are given
by

x;,=e, i=27345 43

From eqn (33), we obtain the eigenvalues associated with x, and x,. The necessary condition
for a general bifurcation is first satisfied when the fundamental eigenvalue, w,, obtains a
value of zero, which occurs when the generalized hardening modulus obtains a value of

H® =} /(G+1’K)(G + B K) — 4(G + upK). 44

Any diffuse or discontinuous bifurcation mode can be written as a linear combination of
the eigentensors associated with D®. For a discontinuous bifurcation to occur in the x,—x,
plane, &,,, £,; and €3 must all equal zero. The conditions §,; = 0 and £,; = 0 imply that
o, and a5 equal zero in eqn (19) and that the mode is restricted to the following form:

£ =X +0Xy+03X;+%eXg (45)

or

€= (71 +ogpi)e; +ase; +oses+ (75 +agps)es (46)

subject to the following constraint which is needed to satisfy the requirement that ¢, equals
Zero
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—=(y +asp)+ —= — (Yot xepg) = 47

7 VR

The general bifurcation condition {eqn (20)] provides the following additional constraint
W = — 3w, —aiw;—alws. (48)

Using the above equations and maximizing w, with respect to the independent variables,
s, o3 and o4, we obtain equations for the fundamental cigenvalue associated with loss of
strong ellipticity. Then by iteratively solving the eigenvalue problem and the above equations
with monotonically decreasing values for the hardening modulus, we identify the critical
hardening modulus for the loss of strong ellipticity.

For this material and loading, Rudnicki and Rice (1975) have obtained the following
expression for the hardening modulus associated with a classical discontinuous bifurcation

] w-p (u+ﬁ—\/5)2]
H" = E[ls(l —v) 36 ‘ (49)

The critical hardening moduli predicted by the various criteria for uniaxial tension are
plotted as a function of u for various values of # in Fig. 3. Figure 3(a) shows critical values
of the dimensionless hardening modulus, (H/E), as a function of the internal friction
parameter u with the dilatancy parameter f fixed at —0.3. Loading is characterized by
decreasing values of (H/E). Throughout this paper a value of 0.3 is used for Poisson’s ratio.
The general bifurcation condition is always reached first for all values of y # . When
= B = —0.3, the general bifurcation and limit point bifurcation criteria coincide as they
should for an associated law. Similarly, the strong ellipticity condition is always attained
prior to the classical discontinuous bifurcation condition unless p = f = —0.3 where the
two discontinuous bifurcation criteria coincide as they should for an associated law. Figures
3(b), (c) show similar results when the dilatancy parameter f is fixed at 0.0 and 0.3,
respectively. All of these results indicate that the first general bifurcation point is reached
in the hardening regime when the flow is non-associative ¢ # . When the flow is associative,
the tangent modulus tensor is symmetric, D = D*, and the general bifurcation criterion and
the limit point bifurcation criterion both identify the limit point as the first general bifur-
cation point. Likewise, when the flow is associative, the classical discontinuous bifurcation
criterion and the loss of strong ellipticity criterion identify the same point in the softening
regime as the first discontinuous bifurcation point. To reach a discontinuous bifurcation
point, the material must exhibit either strain-softening or non-associative flow. When the
flow is non-associative, the loss of strong ellipticity criterion is satisfied prior to the classical
discontinuous bifurcation criterion, as expected.

DRUCKER-PRAGER WITH ASSOCIATED FLOW

To analyse a Drucker-Prager material with associated flow for a general stress path,
we can simply repeat the process used in the previous section and let 4 = . For an associated
flow rule, we find that the fundamental eigenvalue for D® obtains a value of zero when H
equals zero and that a negative H, strain-softening, leads to a negative fundamental eigen-
value. The fundamental eigentensor corresponding to the zero eigenvalue at the limit point
is

af] (50)

AR

Four of the eigentensors of D® are orthogonal to i and ¢¢ and span the remaining deviatoric

X =8=
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Fig. 3. Critical hardening moduli for a Drucker-Prager material with non-associated flow:
(@) f=—03,(b) =10.0,(c) =03

space. These eigentensors have corresponding eigenvalues of 2G. The remaining eigentensor
is given by

d
xo =i— 1 1)

NG

and has a corresponding eigenvalue of

_ (3KG+24°KG)

Note that when u obtains a value of zero, the von Mises result of xq =i and wg = 3K is
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obtained. Variations in the hardening modulus, H, lead to changes in w, and w and their
corresponding eigentensors. A negative H leads to a negative fundamental eigenvalue.

The critical hardening moduli predicted by the various criteria for uniaxial tension are
plotted as a function of u in Fig. 4. Note that for an associated flow rule, the general
bifurcation and limit point bifurcation criteria both predict the limit point as the first
bifurcation point independent of x. Aiso, when the flow is associative, the strong ellipticity
criterion and the classical discontinuous bifurcation criterion generate identical predictions
for the amount of strain-softening needed for localization. For localization to occur,
the material must strain-soften or exhibit a significant amount of pressure dependence.
Specifically, ¢ must equal \/3;/2 for a discontinuous bifurcation to occur without strain-
softening.

VON MISES

In this section, we analyse a simple von Mises plasticity model with associated flow
and a yield function given by

¥ = Ik (53)
Then

fog=—— (54)

and the tangent modulus tensor for a plastic step is given by

267 ' ®a

=E— . 55
D=E (H+G) ¢°:¢" 3)
The plastic tangent modulus tensor is symmetric, D = D",
The fundamental eigentensor for D is
d
o
with a corresponding eigenvalue of
H

which varies from 2G to 0 as H varies from oo to 0 and becomes negative for negative H.
The remaining eigentensors for D are a set of four tensors which span the remaining space

.z T T T
—det(D9 =0
--det(Q") = 0
0 ——=
jea ./‘/
\ e
o) ,/'/
-2 /‘/ E
K
v
7
./ I
e s 0 5 10
M

Fig. 4. Critical hardening moduli for a Drucker-Prager material with associated flow.
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of symmetric second order deviatoric tensors with corresponding eigenvalues of 2G and the
second order identity with a corresponding eigenvalue of 3K. Note that for this model none
of the eigentensors and only one of the eigenvalues, the fundamental one, depend on the
hardening modulus, H. The fundamental eigentensor does, however, depend on the current
stress state.

A general bifurcation may first occur when the fundamental eigenvalue obtains a value
of zero. At this point, the hardening modulus, H, equals zero. The character of the bifur-
cation is given by the fundamental eigentensor. For example, when the material is subjected
to uniaxial tension,

1
X, =>—— 0 2 0|, (58)

\/800—1

which represents a diffuse bifurcation since x, has no zero eigenvalues. If constraints are
present, the material may be loaded into a strain-softening regime without activating the
first possible general bifurcation. In the strain-softening regime, the fundamental eigenvalue
is negative, and alternate bifurcation modes may be activated.

Any bifurcation mode can be written as a linear combination of the eigentensors as
given in eqn (19). For a discontinuous bifurcation to occur in the x,—x, plane, &, £,; and
53 must all equal zero. This implies that «, and «s equal zero and the mode is restricted to
the following form

10 o0 10 0 010 100
i 02 ol+%2 0 0 o+t o ol+>|o 1 ol 9
NG N N /s

00 —1 00 1 00 0 0 0 1

subject to the constraint
—t——+—==0, (60)

which is an equation for a straight line in the «,—¢ plane. Note that «; is arbitrary. The
general bifurcation condition [eqn (20)] gives the following additional constraint :

2Ga3+2Ga3 +3Kai = —w,, 6D

which is the equation for an ellipse in the a,—o, plane. Note that when w; equals zero, the
general bifurcation regime is a single point with a, = a; = ag = 0. As H and @, become
negative, the size of the general bifurcation regime grows. The first discontinuous bifurcation
mode is reached when H obtains the large negative value of — E/12. At this point,
oy = ﬁ(l +v)/(5—v),a¢ = ﬁ(l —2v)/(5—v), and a3 = 0 (Fig. 5). Ottosen and Runesson

DISCONTINUOUS
BIFURCATION

Fig. 5. Bifurcation regimes for a von Mises material subject to uniaxial tension.

SAS 30:4-F
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(1991) analysed the acoustic tensor and also showed that the first discontinuous bifurcation
mode is reached at this point for a von Mises material subjected to uniaxial tension. If the
hardening modulus decreases beyond — E/12 additional discontinuous bifurcation modes
may be activated.

Since the fundamental eigentensor depends on the stress state, the amount of softening
needed to reach a discontinuous bifurcation will also depend on the stress state. For example,
when the von Mises material is subjected to a pure shear stress in the x,—x, plane, the
components of the fundamental eigentensor are

-1 0 0
01 0] (62)
0 0 0

which indicates that the necessary condition for a discontinuous bifurcation is satisfied at
the limit point when H = 0. The important point here is that by altering the stress path,
the amount of strain-softening needed to satisfy the necessary conditions for a discontinuous
bifurcation can be significantly changed. This occurs because the fundamental eigentensor
for this material model depends on the stress state.

MOHR-COULOMB

Next, consider a simple Mohr-Coulomb model with a yield function given by
¥ =3(0),—052)+3(0, +022)sin g—Ccos @, (63)
where ¢ is the internal friction angle and the coordinate system is chosen such that ¢, and

5, are the maximum and minimum principal stresses, respectively. Then for an associated
flow law

1+sin ¢ 0 0
f=g=>5 0 —~1l+sing 0 (64)
0 0 0

and the tangent modulus tensor for a plastic step is again given by eqn (26). For this model,
the bifurcation at the limit point, H = 0, is always a discontinuous bifurcation since the
fundamental eigentensor for D* is equal to f which has the characteristics required for a
discontinuous mode. The nature of the discontinuous bifurcation, as given by the eigen-
tensor, indicates that the components of n and m are as follows:

J1+sin ¢ 1
S Y e R tan(z+£§> Cm=sd il 69
0 0

It is not surprising that the Mohr-Coulomb model predicts a discontinuous bifurcation at
the limit point and that the orientation of the localized zone depends on the internal friction
angle because this model was developed to capture this type of failure. A shear localization
is obtained when ¢ = 0 and a discontinuous opening mode is obtained when ¢ = 7/2. This
analysis indicates that a Mohr-Coulomb model is appropriate for materials that exhibit
localization at the limit point with an orientation that is dependent on an internal friction
angle.
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A Tresca model with associated flow is identical to a Mohr—Coulomb model with the
internal friction angle set equal to zero. Thus, the previous results indicate that a Tresca
model is appropriate for materials that display localization at the limit point with an
orientation of 45° in the plane of maximum and minimum principal stresses. This model
does not predict the generation of necking or diffuse bifurcation modes that are sometimes
observed experimentally in metals and is, therefore, not appropriate for metals,

EVALUATION OF VON MISES PLASTICITY MODEL FOR METALS

A von Mises plasticity model with associated flow has been used extensively to describe
the plastic deformation of metals. This model does an excellent job of capturing the initiation
of plastic deformation in metals. In this section, we use the previous analyses to determine if
there is any relationship between the bifurcations predicted by this model and experimentally
observed necking and localized deformations in metals. Since we have considered only
infinitesimal deformations, this comparison between analysis and experiment is only valid
for metals which exhibit infinitesimal deformations prior to the initiation of a bifurcation.
Several different experimental investigations that may enhance an understanding of the
necking and localized deformation in metals are reviewed.

Axisymmetric rod subjected to uniaxial tension

First consider a metallic, axisymmetric rod subjected to uniaxial tension. The first type
of bifurcation that is generated in metal rods is necking at some section along the length of
the rod. In some rods, for example aluminum rods tested at high temperature (Nadai,
1950), the applied load slowly decreases as the rods continue to neck until the cross-sectional
area in the necked region is reduced to a point. In other materials, the initiation of necking
is quickly followed by the formation of a crack either at an angle or perpendicular to the
applied loading. Here we interpret a crack or the formation of very thin localized defor-
mation zones as evidence of a discontinuous bifurcation, and the initiation of necking as
evidence of a diffuse bifurcation.

Needleman (1972), Hutchinson and Miles (1974) and Miles (1975) have all investigated
the necking of rods subjected to uniaxial tension using Hill’s (1958) general bifurcation
criterion. These researchers have all shown that the initiation of necking is coincident with
the attainment of maximum load. The necking in the rod is related to activation of the first
general bifurcation mode and is characterized by the fundamental eigentensor, x, in eqn (58)
(Fig. 6). Materials that neck until failure do not strain-soften and therefore do not allow for the
activation of any other general or discontinuous bifurcation modes. The fundamental
eigentensor associated with the tangent modulus tensor for a von Mises material is dependent

5]
1
— -
X3
N

Fig. 6. Activation of the first possible general bifurcation mode in a von Mises rod subject to
uniaxial tension.
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on the stress state. As the necked region evolves, the stress state in the necked region
changes. This leads to a local change in the stress deviator and thus a change in the
fundamental eigentensor. Specifically, as necking occurs, a shear stress component is intro-
duced which directly leads to the introduction of a shear strain component in the fun-
damental eigentensor which explains the formation of a necked region without the gen-
eration of any incompatibilities in the neck.

In other materials, a small amount of necking is quickly followed by the formation of
a crack either at an angle or perpendicular to the applied loading. The analyses given above
indicates that a von Mises material subjected to a pure shear stress can localize without
softening but that a von Mises material subjected to a uniaxial tensile stress must exhibit a
significant amount of softening to localize. As the necked region evolves in the bar, the
stress state deviates from a homogeneous uniaxial tensile stress state and strictly speaking
the results from the above analyses do not apply. However, if the amount of necking is not
significant, then it seems reasonable to expect the stress state in the necked region to
approach that of the original homogeneous uniaxial tensile stress state and to conclude that
the material must exhibit strain-softening for the localization to occur. Of course, as shown
in the analysis of the Drucker-Prager model, the localization could also be due to pressure
dependence of the yield surface, non-associated flow, or a combination of softening, pressure
dependence and non-associativity. An accurate study of the evolution of the necked region
and subsequent potential localization would require a numerical study similar to that of
Needleman (1972) which would allow a characterization of the stress state in the evolving
necked region.

Axisymmetric bar with lateral displacements constrained

Next, consider the same axisymmetric bar subjected to uniaxial tension with the
artificial constraint that lateral displacements be identical but not necessarily equal to zero
along the entire length of the bar as shown in Fig. 7. This constraint will not allow the bar
to neck and will thus constrain the first general bifurcation mode. Furthermore, the first
discontinuous bifurcation mode given by eqn (59), which is characterized by the formation
of a localized zone at an angle of 48.8° from the loading axis will also be constrained. With
continued softening of the material, the first unconstrained discontinuous bifurcation that
will actually lead to localization is an opening mode discontinuous bifurcation with an
orientation, n, parallel to the loading axis. To activate this mode a4 in eqn (59) must equal
1 /\/5 and H = — E/(6—6v). This example shows that when the first possible discontinuous
bifurcation is constrained, the localization that is ultimately generated is not characterized
by the mode associated with the first possible discontinuous bifurcation but rather by the
first unconstrained discontinuous bifurcation.

X2
o
X3

Fig. 7. Activation of a discontinuous bifurcation mode in a von Mises rod subject to uniaxial tension
with lateral displacements constrained to be identical.
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=

(a) (b)

Fig. 8. Activation of the first general bifurcation mode in a von Mises plate subject to uniaxial
tension with : (2) no lateral constraint, (b) lateral displacements constrained at the ends.

Thin plate subjected to uniaxial tension

Experiments on thin metal plates subject to uniaxial in-plane tension indicate that
necked regions form at angles of between 55 and 65° from the loading axis (Nadai, 1950;
Aronofsky, 1951) and not perpendicular to the applied loading as with axisymmetric rods.
Again, the formation of the neck is sometimes followed by the formation of a crack plane,
and at other times the material just continues to neck until failure.

Necking in a thin plate is again associated with the activation of the first general
bifurcation and characterized by the fundamental eigentensor. In the rotated coordinate
system shown in Fig. 8, the components of the fundamental eigentensor for D° based on
eqn (56) are

2 sin® (8) —cos? () 3 cos(6) sin (9) 0
X, =>——| 3cos(f)sin(@) 2cos’(H)—sin*(@@) 0 [. (66)
6 0 0 —1

For a thin necked region to form in the plane of the plate, the x,—x, plane, and to remain
compatible with the surrounding material, the perturbation to the strain rate field in the
necked region is subject to the constraint that the 11 components of the fundamental
eigentensor in the rotated coordinate system must equal zero. This requirement would be
that of a discontinuous bifurcation if the third eigenvalue of x, is zero instead of —1.
Therefore, there is a potential incompatibility in the x, direction. The in-plane constraint
yields 2 sin?(8) —cos® () = 0 or § = 35.3°. In other words, the predicted necked region is
oriented at an angle of 54.7° from the loading axis which corresponds to many experimental
observations and is identical to the orientation predicted by Nadai (1950) and Thomas
(1961) using similar in-plane compatibility arguments. However, these authors did not
address the potential incompatibility in the x; direction. The necking is characterized by
the fundamental eigentensor which, for a von Mises material, is dependent on the stress
state. As the necked region evolves, the stress state in the necked region changes. This leads
to a local change in the stress deviator and thus a change in the fundamental eigentensor.
The components of the fundamental eigentensor are expected to vary continuously as a
function of location within the necked region which explains the formation of the necked
region without the generation of any incompatibilities which were introduced and left
unexplained in Thomas’ (1961) analysis of this thin plate problem.

As shown in Fig. 8(a), the orientation of m which represents the orientation of relative
velocities of bodies on opposite sides of the necked region indicates that at least one end of
the specimen must be free to move in the x, direction for the neck to occur as shown.
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Fig. 9. Effect of strain-softening on the predicted orientation of localization.

Vardoulakis et al. (1978) have developed a device that allows for this lateral displacement ;
however, many specimens are tested in devices that do not allow lateral displacement. This
leads to the formation of two necked regions and relative motion of the bodies on opposite
sides of the necks as shown in Fig. 8(b).

Aronofsky (1951) shows that the variation in the orientation of the necked region from
25 to 35° could be due to material anisotropy. The analysis presented in the previous
sections allows an alternative explanation of this phenomenon if the loading device provides
a constraint which allows the material to be loaded into a strain-softening regime. For
example, consider the strain perturbation given by

i x4 \7‘-5. Bxs, 67)

which satisfies the general bifurcation condition of eqn (20). Components of the strain
perturbation in the rotated coordinate system become

2 sin? (0) —cos” (D) + B 3 cos (B) sin (6) 0
= 3 cos (8) sin (6) 2 cos® (6) —sin? () + B 0 | (68)
6 0 0 _148

The predicted orientation of the necked region is plotted as a function of the amount of
softening needed to satisfy the general bifurcation condition in Fig. 9. When the hardening
modulus, H, has a value of — E/10 an orientation of 25° (65° from the loading axis) is
predicted. Even less strain-softening is needed to activate modes with orientations between
25 and 35°. These results suggest that the experimentally observed variations in orientation
could be caused by the combination of loading constraints and some strain-softening. Also,
when the hardening modulus obtains a value of — E/(6—6v) an orientation of 0° and a
discontinuous opening mode bifurcation is predicted which corresponds to localization
perpendicular to the applied loading. Such a localization is sometimes observed exper-
imentally which would suggest that some metals must exhibit a significant amount of strain
softening, pressure dependence or non-associativity at failure.

Thin plates subjected to equal biaxial tension

Metal sheets are often formed by subjecting them to equal biaxial tension with a
hemispherical punch. At some point in the forming process intersecting shear bands form
at angles through the thickness (Beaver, 1983) as shown in Fig. 10. Forming limit diagrams
indicate that thin plates can be plastically deformed significantly farther if they are subjected
to equal biaxial tension than if they are subjected to uniaxial tension. The necking that is
generated prior to localization in thin plates subject to uniaxial tension is not observed in
thin plates subject to equal biaxial tension. Thus, the change in load path to equal biaxial
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e

Fig. 10. Localization of a strain-softening, thin plate subject to equal biaxial tension.

tension apparently inhibits the activation of any diffuse bifurcation modes prior to
localization.

Storen and Rice (1975) suggest that localization of plates subject to equal biaxial
tension provides experimental evidence of the formation of vertices in the yield surface.
Recently, Hill (1991) has shown that anisotropic hardening could also lead to the observed
localization. Here we present an alternative explanation. For equal biaxial tension in the
x;—x; plane (the plane of the plate), the components of the stress tensor and the stress
deviator prior to localization are as follows:

10 0 1 0
e=al0 0 0], ad=>§o —2 ol (69)
0 0 1 0 0 1

For this problem the fundamental eigentensor which is the normalized stress deviator is
not compatible in the plane of the plate because the eigenvalues associated with the x,—x;
plane are both positive. Thus, no orientation can be found for which a perturbation to the
strain rate field by the fundamental eigentensor is compatible in the x,—x; plane with the
surrounding material. As the material begins to strain soften, alternate bifurcation
modes may be activated. However, by considering all linear combinations of the
eigentensors associated with D, we quickly find that the first bifurcation mode which
satisfies the constraint to remain compatible in the x,—x; plane is a discontinuous bifurcation
given by

100 ~10 0 100
im—lo 2 ol+| 0 0 ol+2%|o 1 o (70)
NG /2 NG ’

0 01 00 1 00 1

which satisfies the instability condition of eqn (20). This discontinuous bifurcation mode is
activated when H = —E/12, a, = —/3(14+v)/(5—v) and oy = —/2(1 —2v)/(5—v). This
bifurcation mode represents shear bands forming at angles of 48.8° from the x, axis which
is exactly the type of localization that was observed by Beaver (1983). The formation of
intersecting shear bands leads to an apparent necking due to the relative motion of material
on opposite sides of the shear band (Fig. 10). Instead of the requirement of vertices (Storen
and Rice, 1975) or of anisotropic hardening (Hill, 1991), this analysis shows that with a
sufficient degree of softening, conventional von Mises plasticity with associated flow can
predict the localization in a plate subject to equal biaxial tension. Furthermore, this analysis
helps to explain why the necking that is observed in thin plates subject to uniaxial tension
is not observed in thin plates subjected to equal biaxial tension.

Thin-walled cylinder subjected to internal pressure
Several investigations [see for example Needleman and Tvergaard (1984)] have
involved thin-walled cylinders subjected to internal pressure. These cylinders fail rather
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catastrophically, with cracks forming along the axis of the cylinder and at an angle through
the thickness (discontinuous bifurcation) as shown in Fig. 11.

Prior to localization the components of the stress tensor and the stress deviator are as
follows

2 00 1 0 0
o:%OlO,o‘“»OO 0f. (71)

0 060 0 0 -1
We see that the stress deviator is different from the stress deviator found in the previous
examples. For this example, the fundamental eigentensor for D* which is equal to the
normalized stress deviator represents a discontinuous bifurcation mode. Furthermore, the
fundamental eigentensor indicates that a shear band oriented at 45° through the thickness
and along the axis of the specimen will occur at the limit point. This predicted localization
was observed experimentally by Needleman and Tvergaard (1984). Comparing this result
with the previous ones, we see that the stress state generated in the wall of a pressurized
cylinder has a detrimental effect on the apparent ductility of the material.

These examples show that the type of bifurcation, diffuse or discontinuous, exhibited
by metals apparently depends not only on the material but also on the geometry and the
prebifurcation stress state. A simple von Mises plasticity model with associated flow predicts
both the necking and the localization that is observed experimentally. This analysis indicates
that strain-softening can account for many features observed in metals. Most previous
analyses have focused primarily on pressure dependence, nonassociativity and vertex devel-
opment in the yield surface to account for the experimental observations. A close correlation
between theoretical predictions and experimental data is needed to provide answers con-
cerning which effect is dominant for any given material.

CONCLUSIONS

Necessary conditions for general and discontinuous bifurcations were reviewed. A
necessary condition for the activation of a general bifurcation mode is that the symmetric
part of the tangent operator, D is not positive definite. A necessary condition for general
bifurcations with compatible bifurcation modes is the loss of strong ellipticity criterion
which states that the symmetric part of the acoustic tensor, Q° = n*D**n, is not positive
definite. The classical necessary condition for localization is that the acoustic tensor, Q, has
a zero eigenvalue. Here we propose that the loss of strong ellipticity criterion which identifies
the first possible bifurcation with a kinematically compatible mode should be used as the
necessary condition for localization.

The fundamental eigentensor associated with D* identifies the character of the first
general bifurcation mode. Any diffuse or discontinuous bifurcation mode can be represented

Al ]

Fig. 11. Localization of a pressurized cylinder.
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as a linear combination of the eigentensors for D*. Necking occurs when the first uncon-
strained general bifurcation mode is reached. Localization occurs when the first uncon-
strained discontinuous bifurcation mode is reached. Deformation modes associated with
general bifurcations have an inherent potential incompatibility which naturally leads to the
evolution of a zone of finite width, Localized deformation zones associated with dis-
continuous bifurcations have an arbitrary width. A non-local constitutive theory is one
approach to generate a zone of finite width and to maintain strong ellipticity when failure
is governed by a discontinuous bifurcation.

A review of experimental observations of localized deformation in metals indicates
that the type of localized deformation that is generated will depend on the material, loading
and geometry. A von Mises plasticity model captures the variation in bifurcation mode
with stress state because the fundamental eigentensor associated with the tangent modulus
tensor for this model depends on the stress state and a change in the stress state leads to a
change in the associated bifurcation mode.

An analysis of Tresca and Mohr-Coulomb models indicates that these models will
always predict a discontinuous bifurcation at the limit point. The orientation of the localized
deformation zone predicted by these models is rather insensitive to changes in stress state.
For example, the Tresca model always predicts a shear band oriented at 45° from the
principal stress axes and in the plane of maximum and minimum principal stress. The Tresca
and Mohr—Coulomb models are not able to predict the change in bifurcation mode and
orientation with changes in stress state and, therefore, do not seem to be appropriate models
for metals.

The bifurcation analyses performed in this paper along with experimental observations
of localized deformation can be used to evaluate the suitability of constitutive models for
various materials. For example, the existence of strain softening rather than non-
associativity or pressure dependence in a simple von Mises plasticity model provides the
capability for predicting a wide range of features that are observed experimentally in a
number of metals. Similar analyses for material models exhibiting different assumptions
should be equally revealing.
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